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Shearing flow of an idealized, two-dimensional foam with monodisperse, spatially 
periodic cell structure is examined. Viscous effects are modelled by the film 
withdrawal mechanism of Mysels, Shinoda & Frankel. The primary flow occurs where 
thin films with inextensible interfaces are withdrawn from or recede into quasi-static 
Plateau borders, film junctions that contain most of the liquid. The viscous flow 
induces an excess tension that varies between films and alters the foam structure. 
The instantaneous structure and macroscopic stress for a foam of arbitrary 
orientation are determined for simple shearing and planar extensional flow. As the 
foam flows, the Plateau borders coalesce and separate, which leads to switching of 
bubble neighbours. The quasi-steady asymptotic analysis of the flow is valid for 
small capillary numbers Ca based on the macroscopic deformation rate. This requires 
the foam to be wet, i.e. the liquid volume fraction must be large enough that 
structure varies continuously with strain. The viscous contribution to the 
instantaneous stress is O(Cai) and depends on the foam orientation and liquid 
content. Viscometric functions are determined by time averaging the instantaneous 
stress. When these functions are scaled by surface tension over cell size, the shear 
stress is O(Ca$); by contrast, the first normal stress difference is O(1). Even though 
wet foams are elastic for small but finite deformations, the time-averaged shear stress 
does not evidence a yield stress. 

1. Introduction 
The development of microrheological theories for dilute fluid-fluid dispersions is 

facilitated by the absence of hydrodynamic interaction between drops that are 
nearly spherical in shape (Taylor 1932, 1954; Schowalter, Chaffey & Brenner 1968; 
Cox 1969; Frankel & Acrivos 1970; Schowalter 1978; Flumerfelt 1980). The shear 
rheology of dilute dispersions can be expressed as a small perturbation on the 
Newtonian behaviour of the continuous phase. By contrast, it is even difficult to 
quantify the equilibrium shape of the phases for highly concentrated dispersions. 
Foams consist of polyhedral gas bubbles separated by a continuous network of thin 
non-planar liquid films ; concentrated liquid-liquid emulsions are similar in structure. 
Moreover, foams and concentrated emulsions exhibit solid-like characteristics such 
as a finite shear modulus and yield stress, in addition to non-Newtonian viscosity and 
slip at the wall. 

The rheology of these concentrated systems is similar when compressibility and 
viscosity of the dispersed phase can be neglected. Here, we consider such conditions 
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FIQURE 1. The equilibrium structure of an idealized two-dimensional foam with perfectly ordered, 
monodisperse, cell structure. Shown are thin films with thickness 2h,, Plateau borders with uniform 
curvature r0, the characteristic cell size a, and the initial orientation angle 6. 

and refer to all of these highly structured fluids as foams. Previous experimental and 
theoretical studies of foam rheology have been reviewed by Kraynik (1988). 

Even though Kelvin (1887) described the shape of an ideal foam cell over a century 
ago, no microrheological model based on three-dimensional structure has been 
developed. Kelvin’s minimal tetrakaidecahedron contains six planar quadrilateral 
and eight non-planar hexagonal faces, all with curved edges. Because of this 
geometrical complexity, all theories developed over the past decade have assumed 
two-dimensional structure. These models are useful and represent logical steps 
toward more complete theories. Although there has been progress in the computer 
simulation of two-dimensional, polydisperse foams with disordered structure (Weaire 
& Kermode 1983, 1984; Weaire, Fu & Kermode 1986; Weaire & Fu 1988), we and 
most other investigators follow Princen (1983) and consider perfectly ordered 
systems. 

The theories for monodisperse foams examine deformations of the equilibrium 
structure shown in figure 1. The characteristic parameters include cell size a, film 
thickness 2h0, radius ro of the Plateau border, and liquid volume fraction q5. The 
presence of a surface-active agent that gives rise to a positive disjoining pressure 17 
promotes foam stability. The collective fluid microstructure forces in thin films, 
which stem from molecular, ionic-electrostatic, and steric interaction effects, 
determine 17. A balance between capillary pressure in the Plateau borders and 
disjoining pressure in the thin films determines the equilibrium distribution of liquid 
between these two regions. Because the disjoining pressure is typically effective over 
very small distances, we restrict our attention to foams where h, 4 ro and assume 
that essentially all of the liquid is confined initially to the Plateau borders. 

In  the following analysis, we determine the response of a monodisperse foam in 
slow, steady shearing flows. Our model foam exhibits nonlinear elastic behaviour for 
small but finite deformations. Under large strain, the length of a thin film can go to 
zero, resulting in coalescence of Plateau borders. The eventual separation of the 
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borders produces a new film, provides a mechanism for switching of cell neighbours, 
and reduces distortion of the dispersed phase. This coalescence and separation of 
Plateau borders is a fundamental mechanism for foam flow. Small deformation 
theories (Schwartz & Princen 1987 ; Reinelt & Kraynik 1989) do not incorporate this 
mechanism and cannot describe steady flow. 

When the foam is deformed, thin films connecting Plateau borders change length. 
Film expansion causes liquid to be withdrawn from the Plateau borders and 
redistributed into the films. To model viscous effects, we adopt the film withdrawal 
mechanism described by Mysels, Shinoda & Frankel (1959) who examined the steady 
withdrawal and recession of thin film from an otherwise stagnant pool of liquid. Their 
assumption that thin-film interfaces are inextensible leads to withdrawn film surface 
tensions that exceed the equilibrium value To. 

The matched asymptotic analysis of Mysels et al. is developed for small capillary 
numbers based on film withdrawal speed. To ensure that the capillary number 
associated with each film in the foam is always small, our quasi-steady analysis is 
restricted to small macroscopic strain rates and to ‘wet ’ foams. A wet foam contains 
enough liquid to guarantee slow film withdrawal speeds during coalescence and 
separation of Plateau borders. 

The detailed variation in foam structure and film-level transport with imposed 
flow determines the instantaneous macroscopic rheology of the foam. To calculate 
viscometric functions such as the viscosity and first normal stress difference for these 
perfectly ordered fluids, the instantaneous stress is averaged over a suitable time. 
This can be accomplished for initial foam orientations, called strain periodic 
(Kraynik & Hansen 1986, 1987) or reproducible (Adler & Brenner 1985), for which 
the foam structure is a periodic function of strain. In  addition to simple shear, we also 
examine planar extensional flow and calculate extensional viscosity. 

2. Mathematical formulation 
The rheology of a two-dimensional monodisperse foam can be analysed by 

examining the response of the unit cell, shown in figure 2, to homogeneous 
deformations (Princen 1983; Khan & Armstrong 1986, 1987; Kraynik & Hansen 
1986, 1987 ; Reinelt & Kraynik 1989). For simple shearing flow, the area (volume per 
unit depth) of the unit cell is constant and given by A = 3b2/4. The displacement of 
each film midpoint is affine and determined from the macroscopic strain. The vectors 
b, (k  = 1,2) represent the position of the kth film midpoint relative to the midpoint 
of film 3. For simple shear, these vectors are 

(2.1) 

where @Ex, b i y )  are the components of bk when the shear strain y is equal to zero. The 
vectors g ,  = Gk(cos/3,, sin@,) (k = 1,2,3) represent the length G, and orientation of 
each film in the unit cell. The angle is measured counterclockwise from the positive 
X-axis as shown in figure 3. For an undeformed foam, the film variables are 

bk = (bO,X + ybO,Y? bO,Y) = gk-g3, 

GO, = !p, = e+;n, g = e+yn, g = e + : ~ ,  (2.2) 

where 8 represents the initial orientation of the foam as shown in figure 1. 
The thin films connect junction regions called Plateau borders whose geometry is 

shown in figure 3. In  our quasi-steady analysis, the pressure is uniform throughout 
the border and is given by p = p ,  - q / r  ; where p ,  is the uniform pressure in the 
dispersed phase, T, is the equilibrium surface tension, and r is the uniform radius of 
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FIGURE 2. A unit cell and the film vectors g, are shown for a deformed foam. The film-mid- 
point position vectors are given by b, = g, -g8. 

curvature in the border. The quantity D, in figure 3 is the distance from the centre 
to the mouth of the Plateau border and 2rdk is the distance across the mouth ; both 
lengths can vary with k. From the border geometry, law of sines, etc. we get the 
following equations, which will be used later in the analysis, 

(2.3) 

(2.4) 

(2.5) 

(1 + d , )  sina, = (1  +d,) sinal, 

(1 +d,) = (1  +d,) cos a, + (1  +d,) cos al, 

D, = r( 1 + d k ) cot a,. 

The first two equations remain valid when indices are permuted. The angles a, and 
,4, are related through permutations of 

B3-P1 = n-az. (2.6) 
The Plateau border is bounded by circles of radius r that are centred at  the corners 

of the (dash-dotted) triangle in figure 3. The area of the Plateau border is given by 

A,, = 2r2( 1 +d,) (1  +d,) sin a3 -$nr*. 

A& = 4 3  ri -$mi. 

(2.7) 

(2.8) 
The equilibrium radius r,, is determined from AOpB = $A, where A is the area of the 
unit cell and 9 is the liquid volume fraction. When the foam is being deformed, r is 
determined from conservation of mass, 

Again, these indices can be permuted. Por an undeformed foam, d, = 0, a, = in, and 

Ap, +A,, = A&, (2.9) 

where A,, is the total area of the thin films which is negligible in the undeformed 
state or under static conditions. 

To determine an equat,ion for the shape of the interface in the border and later in 
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FIGURE 3. The Plateau border geometry on the left shows the uniform radius of curvature r and 
the distances D,. The position (Xk, G) indicates the origin of each film-leyel coordinate system 
shown in figure 4. The distance across each mouth is 2rd, ; this length is O(Cuz) when there is a thin 
film and O( 1) when film k has disappeared through Plateau border coalescence. The insert on the 
right shows the relative position of the Plateau border in the unit cell and the orientation angle 
of film 1. 

the thin films, we switch from the global coordinate system (X, Y )  centred in the 
Plateau border, to a local coordinate system ( x ,  y). This film-level coordinate system 
is centred at the Plateau border mouth (X,, &) with the x-axis aligned along the kth 
film. The transformation between the coordinate systems is 

x = x k  + x C0spk-y sin p k ,  Y = Yk + x sin/?, + y cos p k .  

h (x )  = r(1 +dk)-(T2-x2)'. (2 .11)  

(2 .10)  

In  terms of the local coordinates, interfaces in the Plateau border are described by 
y = + h ( x )  where 

On each side of the Plateau border triangle, the effective tension is 2Tk, where 

Tk = T , / ( l + h i ) : + h T , / r  = T , ( l + d k ) j  (2 .12)  

and h, is the derivative of h with respect to x .  The first term in the middle expression 
is the component of tension parallel to g k  and the second term stems from the 
capillary pressure difference between the two phases ; the right-hand side follows 
from (2 .11 ) .  Using (2 .3 ) ,  (2 .4 ) ,  (2.6) and (2 .12) ,  one can verify that a force balance on 
the Plateau border is satisfied, 

c TkPk = o, (2.13) 
k-1 

where p k  = (cosp,, sinp,) is the unit vector parallel to g,.  
We develop an analysis for small imposed strain rate y by expanding all variables 

for Ca Q 1 ,  where Ca = pay/% is the macroscopic capillary number. The primary 
flow occurs where thin film is withdrawn from the Plateau border. In solving the 
equations that govern this flow, Mysels et al. (1959) showed that the withdrawn film 
thickness, the excess film tension, etc. are O(Ca%). Knowing this, our expansions take 
the form, 

- 

G ,  = d,+~a;G,, (2.14) 
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where the a denotes a quasi-static term and the prime refers to rate dependence. Both 
the hat and prime variables are functions of the strain y .  When film is $owly 
withdrawn, the distance across the mouth of the border is O(Cag) ; because d ,  = 0 

(2.15) 
each thin film has length 

The withdrawal speed of individual films is approximated by U, = y dLl,/dy. This 
provides the connection between each film-level capillary number Ca, and the 
macroscopic capillary number : 

Cu, = pU,/T, = CaF,, where aF, = &,/dy. (2.16) 

A more complete discussion of film-level flow is given in the next section. 
To fully determine the evolution of foam structure for large strains, one must 

account for the complete disappearance of a film and the subsequent border 
coalescence. Following Princen (1983) a Plateau border connected by three thin films 
to its neighbours is labelled as mode I .  A transition from mode I to mode I1 occurs 
when the length of one con:ecting film becomes zero. I n  mode 11, two Plateau 
borders are coalesced; thus, d k  =!= 0 for a single value of k .  All borders form pairs 
simultaneously in a monodisperse spatially periodic foam. A third possibility, not 
encountered in previous work, occurs when two of the thin films have vanished. For 
this case, which we refer to as mode 111, our foam consists of compressed layers of 
bubbles separated by channels of fluid. These three modes are described in detail 
later. The values of y at which the mode transitions occur are strongly dependent 
upon the initial orientation angle 6 and liquid volume fraction $ of the foam. 

In addition to mode transitions, it is necessary to account for switching of bubble 
neighbours by redefining the unit cell when G, = 0, for some value of k .  The new 
reference vectors b!, described in (2.1), which determine the new unit cell, are 
specified in terms of the current b, in the following manner (Kraynik & Hansen 

Lk = G,-D,. 

1986) 
1 if G, = 0, then by = b,, b!j' = 6,-b, ,  

(2.17) i if G, = 0, 

if G, = 0, 

then by = b,-b,, 

then by = b,, 

When the unit cell is redefined, the 'incremental' strain in (2.1) is set to zero. In 
general, there are many mode transitions and unit cell switches as the foam flows. 
Through this mechanism, the distortion of individual bubbles can be bounded even 
when the relative displacement of two bubble centres is arbitrarily large. 

b!j' = b,, 

b!j' = b,. 

3. Film-level viscous flow 
This flow was analysed by Mysels et al. (1959) and adapted to foams by Schwartz 

& Princen (1987). The matched asymptotic analysis is developed for small Ca, but 
neglects disjoining pressure ; this means that the results are not valid in the limit 
Ca, + 0 (Mysels & Cox 1962 ; Lyklema, Scholten & Mysels 1965 ; Teletzke, Davis & 
Scriven 1988). Essential features of this quasi-steady analysis are now described. 

The primary flow occurs where a thin film with inextensible interfaces is 
withdrawn from or recedes into the Plateau border. Figure 4 shows an enlarged view 
of a thin film near the Plateau border and defines the geometry in terms of the film- 
level coordinate system of (2.10). The film thickness profile in region I11 is 
determined by the withdrawal speed of each film segment from the border. The 
viscous flow that tends to equalize the film thickness in region I11 is neglected. The 
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FIGURE 4. Enlarged view of a thin film near the Plateau border (I) showing the regions identified 
by Schwartz t Princen to be significant in a quasi-steady analysis of film-level flow. The primary 
flow occurs in the transition region (11) and determines the thickness h" of film entering the 
withdrawn film region (111). The very small thickness of equilibrium film in region IV is determined 
by disjoining pressure. In this analysis, the equilibrium surface tension T, in the Plateau border 
differs from the uniform value of surface tension T in  regions I11 and IV. Subscripts associated with 
individual films on d ,  h", and T have been omitted. 

equilibrium film thickness in region IV is also neglected. Films that are generated by 
separation of Plateau borders during shearing flow will not have a region IV. 

Viscous flow in the transition region (11) determines both d; and the thickness of 
film entering region 111. The appropriate lubrication form of the Stokes equations is, 

u, + v, = 0, p ,  = yu,,, p ,  = 0. (3 .1)  

The boundary conditions, u = u k  and v = Uk h,, apply on the interface y = h(x). 
Symmetry a t  the centreline requires : uy = 0 and v = 0. The pressure only depends on 
x and is determined from the local curvature : p = p ,  - T, hzz. 

A similarity solution for the transition region satisfies the differential equation 

T~~~ = (7- 11/73. (3.2) 

where h = h,"q, x = - h,"[(3Cak)-4, Ca, = pU,/T,. 

Here, h? is the asymptotic thickness of film withdrawn from the transition region. 
Discussion of the matched asymptotic analysis and numerical integration of (3.2) can 
be found elsewhere (Landau & Levich 1942; Mysels et al. 1959; Bretherton 1961; 
Park & Homsy 1984; Schwartz & Princen 1987; Reinelt & Kraynik 1989). 

The results that are relevant to our problem describe the asymptotic film thickness 

(3 .3)  

and the distance separating interfaces in the Plateau border 

dk = R ,  h,"/r = PkR,(3Ca,)t or d; = P,R,(3Fk);, (3.4) 

where F, is defined in (2.16) and the coefficients Pk and R ,  are determined by solving 
(3 .2) .  

It is also necessary to calculate the area of each thin film. The time rate of change 
of this area is 

A, = 2uk h," = 2(ayF,) (Caih;), 

A; = 2a3f ?Pk (Fk)gdy. (3.6) I which integrates to 

By summing the area of the thin films, we determine A,, = CagA;,. 
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P 
FIQURE 5.  Coefficients P and R used to determine excess tension for a receding film. The indicated 
values apply when a film recedes a t  the same speed and thickness at which it was withdrawn 
( P  = 0.6430, R = -0.8452). 

When a film is being withdrawn from the border, F, > 0, and the coefficients 

P, = 0.6430, R, = 2.8996, (3.7) 

are uniquely determined. In this case, h; and A; are calculated and stored as 
functions of each thin film length L ,̂. When a film is receding into the border, its 
thickness and remaining area are given by these stored quantities. Knowing h, and 
the values of f and F,, the value of Pk is determined from (3.3). The value of €2, is 
obtained by integrating the differential equation (3.2). Figure 5 shows R, as a 
function of pk for a receding film over the range 0.2 < Pk < 1.0. The integration was 
done using the subroutine DO2HBF in the NAG FORTRAN Library. 

4. Instantaneous macroscopic stress tensor 
The instantaneous macroscopic stress for the foam is calculated by averaging the 

local stress over the unit cell (Batchelor 1970). The equation for the effective stress 
can be written for our two-dimensional foam as 

where 6 = - p / + p [ V u +  (VU)+]. 

Here, d is the local instantaneous stress, A is the area of the unit cell, S is the interface 
that separates the two phases, T is the surface tension which may be non-uniform, 
and t is a unit vector that is tangent to the interface. 

To the order of our analysis, contributions to the stress from the first integral in 
(4.1) are isotropic and equal to [ -p ,  + (T,/T) (APB/A)] /. These terms come from the 
bubble pressure p ,  and the capillary pressure in the Plateau border. It may be 
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surprising that the contribution from viscous flow in the transition region to the first 
integral is higher order and can be neglected. 

The border contribution from the second integral is also isotropic and equal to 
(nrT,/M)/.  All anisotropic terms come from the thin film interfaces. For each thin 
film interface, we approximate the tangent vector t by the unit vector pk = (CoSPk, 
sin/?,) and the surface tension T by Tk from (2.12). Reinelt & Kraynik (1989) have 
shown that these approximations contain all terms relevant to this analysis. The 
contribution to the stress tensor from all the thin films is given by, 

n R  

The instantaneous shear stress and first normal stress difference for the foam are 

5. Evaluation of the foam structure 
Princen (1983) completely determined the quasi-static foam structure as a 

function of strain for the initial orientation 8 = 0. For this particular case, Plateau 
border coalescence only involves pairing and the structure is a periodic function of 
strain. For small liquid volume fractions 4 the solutions exhibit turning points and 
corresponding discontinuities. However, when the foam is sufficiently wet, foam 
structure is a continuous function of strain. Princen’s results for the structure of a 
wet foam are reproduced in figure 6. The shear stress is shown in figure 7 for several 
values of the dispersed phase volume fraction q5d = 1 - 4. The limiting value q& = 
0.9069 represents close-packed circular bubbles. The dashed lines indicate dis- 
continuities in stress which result from discontinuities in foam structure. 

This analysis extends previous work (Princen 1983; Khan 1985; Pacetti 1985; 
Kraynik & Hansen 1986; Khan & Armstrong 1989; Reinelt & Kraynik 1989) by 
accounting for viscous effects in arbitrarily large shearing deformations. The 
approach is valid for all initial orientations of the foam but we restrict ourselves to 
considering values of g5 that provide continuous quasi-static solutions. 

The next four subsections describe how all variables that represent the foam 
structure are determined to O(Cai). This includes both the film network and the 
Plateau border structure. One can forgo these algebraic details and skip to $6 without 
losing continuity. 

5.1. Quasi-static mode I problem 
The mode I problem for an undeformed foam of arbitrary initial orientation was 
solved by Khan & Armstrong (1986). We extend their quasi-static analysis to 
arbitrary reference configurations. 

Because the surface tension is uniform to leading order, three thin films are 
separated by equal angles of in and the Plateau border exhibits equilibrium 
structure. This implies that 

(ik = 0,  Dk = $143  = ro/43, oik = in. (5.1) 
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FIGURE 6. Evolution of foam structure with strain for simple shear with B = 0 and $ = 0.07. 
The range of shear strain is 2 / 4 3  with equal increments. 

-0.4 I I I I 
0 w 3  2 l d 3  

Y 
FIGURE 7. Quasi-static shear stress us. strain curves corresponding to two regimes of dispersed- 
phase volume fraction $d with 8 = 0. When < $: = 0.9466, the shear stress is antisymmetric 
about y = 1 / 4 3  and changes in foam structure are continuous. When $d > $:, changes in foam 
structure are abrupt, as indicated by the dashed line. The stress has been scaled by T,/a.  

To determine mode I film lengths and orientations, we take the dot product of ps - 

with (2.1) and obtain 
- G, = G, cos u2 + a,  = G, cos a1 + a2, 

where 

Taking the cross product of p ,  with (2.1) provides 

ak = b,, cos p3 + b,, sin /I3. 

G,  sina, = e l ,  G,sina, = -e2,  (5.3) 
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e,  = b,, sin /3, - b,, cos p,. where 

Combining (5.2) and (5.3) leads to an equation for the angle p3 
e,cota,+a, = -e,cota,+a,. 

a, = p3-gn, a, = j3+gn. I 
The film lengths are now determined from (5.2) and (5.3) and are given by 

8, = 26,/1/3, d, = -2e",/d3, 8, = -8,/2-4,. 

For the special case of an initially undeformed foam in simple shear, 

b k  = &-tan-' (b), 
8, = +3[(4 + y2)t+ 2y sin $k], 

where $, = 2Pk-tan-' (h). 
5.2. Quasi-static mode 11 problem 

44 1 

(5.7) 

The transition from mode I to mode I1 occurs when the length of one thin film goes 
to zero. We assume L,  = G,-D, = 0;  the other two cases are identical with 
permutation of indices. Taking the dot product of pk (k = 1 , 2 )  with (2.1) gives 

G, = -G,cosa,+c,, G, = -G,cosa,+c,, (5.8) 

where ck = b,, cos p, + b,, sin Bk. 
By taking the cross product ofp, (k = 1,2) with (2.1) and using (2.3) and (2.5) we get 

fi = G, sin a, = D, sin a, = r( 1 + d,) cos a,, 

-f2 = G,sina, = D,sina, = r(1+d,)cosa3, (5.9) 

where fk = bkx Sin Pk - bky cospk. 

When only film 3 has vanished, 2, and 2, are still equal to zero. Since the area of 
the thin film is O ( C d ) ,  (2.7) and (2.9) reduce to 

A,, = 2P2 sin 4, - &P2 = A:B. (5.10) 
1 "  

Equations (2.6), (5.9) and (5.10) give four equations with unknown pl, p,, &,, and P. 
They can be reduced to a single equation for either of the first two unknowns, which 
can be solved using Newton's method for different values of the strain y. Knowing 
these values, we use the hat versions of (2.3) and (2.4) to get 

4, = 4, = $(n-&,), 2, = cos4,+cos&,-1. (5.11) 

The distance fik is npw determined from (2 .5)  which also gives d,, since i3 
equals zero. Finally, p,, 8, and 8, are calculated from the hat versions of (2.6) 
and (5.8). 
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5.3. Rate dependent mode I and mode II problems 
The equations that determine the prime quantities are found by substituting 
expansions like (2.14) into the basic equations. From (2.3) to  (2.5), we get 

d i  sin oi, + (1 + d , )  a; cosh, = d; sin h, + (1 + 2,) a; cosoi,, (5.12) 

= (5.13) 

D; = r'(1 +cik)cotoik+r"d;cotoi,-r"(l+ci,),;,osec20ik. (5.14) 

cos oi, - (1 +2,) a; sin oi, +a; cos oil - (1 + 8,) a; sin oil, 

From (2.7) and (2.8), we get 

A ; ' ~  = 4 q i  + d , )  (1  + d 2 )  sin oi, +2~2[di(1+ 2,) + d i ( l  +&I sin oi, 

+2r"2(1+d , ) (1+d , )a~cos~3-nPr '  = -AkF, (5.15) 

where A& is determined from film-level viscous flow through (3.6). The correction to 
the thin film lengths are 

(5.16) 

The rate dependent corrections to the instantaneous shear stress and first normal 
stress difference follow from (4.3) and are given by 

I (5.17) 

The quantity dk does not appear because it is non-zero only when the length L, is 
equal to zero. Equations (5.12)-(5.17) are valid for all three modes. 

In mode I ,  all three dk are determined from film-level viscous flow through (3.4). 
Using (5.12) and (5.13), we get 

r 3 1  

(5.18) 

The quantities r' and 0; are calculated from (5.15) and (5.14), respectively. 

equation that determines pi, 
To determine the corrections to the p k ,  we use (2.6) and (5.4). This leads to  an 

(5.19) 

= /&+a; and ,13; = &-a;. Using (5.2) and (5.3), we 

[&,/ 1 / 3  - eA1 + ci,/1/3 + Ez]  = ! (E l  a; + E, a;), 
and the other angles through 
get the length corrections 

} (5.20) 
1/36; = -8,a;l+2&,Pb, 1/36; = -8,a;-22Ei2pi, 

2Gb = -G;+1/38,a;+2Elp& 

As with the mode I hat problem, we give expressions for ,&k and G; for the special 
case in which we begin with an undeformed unit cell : 

(5.21) 
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(k, 1, m) are permutations of (1,2,3), and $k was defined in (5.7). 

difference are evaluated from (4.3) and are given by 
The complete expressions for the instantaneous shear stress and first normal stress 

where 

The leading-order terms, which represent the quasi-static stress, were derived by 
Khan & Armstrong (1986) and do not depend on the initial orientation of the foam. 
This isotropic material response does not carry over to other modes or to the rate- 
dependent terms. So in general, a monodisperse, spatially periodic foam exhibits 
anisotropic rheology. 

I n  the quasi-static mode I1 problem discussed in $5.2, we examined the case in 
which L,  = 0; thus, d’, and d’, are determined from the film-level viscous flow. The 
prime versions of (5.9) are 

(5.23) 

These equations, (5.15), and the prime version of (2.6) provide four linear equations 
for the unknowns pi, pi, a;, and r’. The quantities a;, a;, and d j  are now determined 
from (5.12) and (5.13). The remaining quantities D;, &, and Gk are calculated from 
(5.14) and the prime versions of (2.6) and (5.8). 

I dl 
d, p’, = - r‘ cos Oi, - 

= r’ cos 2, + +dL cos 2, -+a; sin &,, 
cos 2, + Pa; sin ~ 2 ~ .  

5.4. Mode III problem 

To consider any foam orientation other than 0 = 0, it is necessary to examine the 
mode 111 problem. A transition from mode 11 to mode 111 occurs when the length of 
two thin films equals zero. Throughout this section, we assume L, = L,  = 0, and 
recognize that the other cases are given by permuting indices. Setting G, = D, and 
G ,  = D ,  in (5.2) and (5.3) and using (2.3) and (2.5), we get 

-G3 = D,cosa,+a, = D2cosa,+a,, (5.24) 

el = D, sin a, = r( 1 + d,) cos a,, (5.25) 

- e, = D, sin a, = r( 1 + d,) cosa,. (5.26) 

Recognizing that D, cosa, = D, cos a,, (5.24) simplifies to  a, = a, and can be written, 

(5.27) 

This equation determines /3, and also gives /3; = 0. Combining (5.25), (5.26) and (2.4) 
provides an equation for r ,  

e , -ee ,  = v(l+d,). (5.28) 

15 FLM 215 
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Its  solution is r = el-e,, r' = -r*d' 3, 

where d, = 0 and dj is determined from film-level viscous flow. 

known quantities, 

D. A .  Reinelt and A . M .  Kraynik 

(5.29) 

Combining (5.25), (5.26) and (2.7) leads to equations for a, and a, in terms of 

(5.30) 

Using these and the prime version of (2.9), we can determine ctl and a, to O(Cag). 
Here, A,, in (2.9) is just the area of thin film 3. The remaining angles pl, p,, and a, 
are calculated from (2.6). 

" A "  

I A,, = 2re,( 1 + d, )  tan al -$nr2, 
A,, = -2re,(l + d 3 )  tana,-;nr2. 

Finally, d ,  and d ,  are determined from permuted versions of (2.3), 

sin a, sin a2 
sin a, sin a3 

d, = (1  + d 3 ) - -  1, d, = (l+d,)-- 1.  (5.31) 

The quantities D,, D,, and G, are derived from (5.24) to (5.26), and D,  is determined 
from (2.5). 

6. Evaluation of viscometric functions 
The effective viscosity and other viscometric functions for a spatially periodic 

foam are evaluated by averaging the instantaneous stress over time (Adler, 
Zuzovsky & Brenner 1985 ; Kraynik & Hansen 1986, 1987). Only when the structure 
and stress are periodic functions of strain is the appropriate choice of time interval 
obvious ; then, 

where 8 is the time-averaged stress and yp is the strain period. This average includes 
contributions from all intermediate foam structures and removes the explicit 
dependence on time that is associated with a spatially periodic model. 

Kraynik & Hansen (1986) derived necessary conditions on the initial orientation 
angle 0 for strain periodic response in simple shearing flow. There is an infinite set of 
such orientations 8, which satisfy 

tan8, = 4 3 I / ( I + 2 J )  withy, = 2(12+IJ+J2) /43 ,  (6.2) 

where I and J are relatively prime integers such that I 2 0, J 2 I ,  and J > 0 ; this 
covers all orientations 0 < Bp < in. 

7. Results for simple shearing flow 
7.1. Ximple shearing $ow : B = 0 

The case examined by Princen (1983), BP = 0, has the smallest strain period yp = 
2 / 4 3 .  For reasons that will become clear, it is the easiest situation to analyse. To 
model viscous flow as quasi-steady for all times, we restrict ourselves to conditions 
giving continuous quasi-static solutions ; this requires that 

x: 
< # < l - - -  4 3 ( 4  - n) 

1 4 + 8 4 3  2 4 3 '  

or 0.9069 < q5d < 0.9466 (see figure 7) .  We refer to materials satisfying such 
continuity conditions as wet foams. In each period, there is a single transition from 
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mode I to mode I1 and then back, as shown in figure 6 ;  and, the transition strains 
depend on I$. The unit cell switches when y = 1/.\/3. 

For this particular case, both the length of each thin film and the magnitude of its 
withdrawal speed are symmetric about y = 1/.\/3 and monotonic over a half period. 
Under these conditions, each film recedes into the Plateau border a t  the same 
thickness and speed a t  which it was withdrawn ; therefore, the coefficients P, and R, 
that are associated with the film-level viscous flow, are also constant for film 
recession (Schwartz & Princen 1987; Reinelt & Kraynik 1989). The coefficient Pk has 
the same value as in (3.7) but R, = -0.8452 (see figure 5 ) .  This appears to be unique 
for 0 = 0. 

Figure 8 shows typical instantaneous shear stress functions for q5 = 0.07. The 
function $,, is continuous and odd about y = 1 / d 3  (Princen - 1983). Even though 

= 0. Discontinuities in 
the function aky occur at mode transitions and reflect discontinuities in film 
withdrawal speed with the significant change in geometry for coalesced Plateau 
borders; the total number of thin films also changes a t  each mode transition. 
A l t h o u i a k ,  can be negative, i t  must integrate to a positive quantity over the 
cycle, a;Yy > 0, as will be discussed in $8. 

Figure 8 also shows the instantaneous first normal stress difference. The function 
is continuous, non-negative, and even about y = l / d 3 .  It integrates to a positive 

value over the period; therefore, % 5, which is certainly not typical of 
measured viscometric functions for viscoelastic fluids such as polymer solutions and 
melts. The function N; is also discontinuous but in contrast to G, the sign of 
depends on I $ .  The time-averaged stresses, which determine viscometric functions, 
are shown in figure 9 as functions of I$*. 

is finite, it integrates to zero over the period; thus 

15-2 
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FIGURE 10. Evolution of foam structure with strain for simple shear with 19 = in and q5 = 0.08. 
The range of shear strain is 22/3 with equal increments. Mode I11 structure is indicated in ( e i ) .  

7.2 .  Simple shearing $ow: Bp =+ 0 
When OP =I= 0, the structure of a wet foam during each cycle will involve mode I11 and 
numerous mode transitions, the number of which depends on 4. These cases also 
require evaluation of the thickness profile for each film to determine instantaneous 
values for Pk and Rk. 

(I = J = 1 in (7.1)) with q5 = 0.08 is 
shown in figure 10. The corresponding instantaneous stress functions are shown in 
figure 11. There are only four mode transitions when 4 = 0.08 but ten when q5 = 0.06. 

The evolution of foam structure for Bp = 
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8 

4 

Y 
8 

FIQURE 12. Instantaneous quasi-static stress us. strain for simple shear with tan8 = 1/3 /5  
(8 e 0.3334 radians) and q5 = 0.08; -, bXu; -.- ,a,. Note that the normal stress difference can 
be negative. 

We also examined the case, tan8, = 1 / 3 / 5  (I = 1, J = 2), and show in figure 12 
typical instantaneous shear stress and normal stress functions to leading order. Note 
that in this case Nl can take on negative values. Both the length and complexity of 
the cycle increases with (I2 + I J +  J2). 
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l2 
FIGURE 14. Coefficients of vs. $a for the three foam orientations of figure 13. 

7.3. Discussion 
The effective viscosity for the foam is defined by 

t- - 
(7.2) 7z; = ~ / y  = 3xy/y + Cazcr&../y. 

Because the stress is proportional to %/a,  the last term is proportional to pCa-). 
When the quasi-static structure is continuous in strain, &xy is always identically 

equal to zero, and such wet foams exhibit a power-law, shear-thinning viscosity 

- 
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function. Figure 13 shows the dependence of the viscosity function on the liquid 
content and orientation of the foam. For all cases examined, the effective viscosity 
increases with decreasing 4, The quantitative results are remarkably similar for the 
various orientations considering the significant differences in structure evolution 
with strain. - 

Figure 14 shows that the first normal stress difference is positive for the cases 
examined but can increase or decrease with $. The qualitative features ofPl are even 
more sensitive to orientation. Thus, one cannot anticipate the behaviour of the 
normal stress functions for an isotropic foam with disordered structure based on the 
response of a monodisperse foam. The results for planar extensional flow in $9 show 
additional evidence of the anisotropic rheology stemming from perfectly ordered 
structure. 

8. Macroscopic stress power 
The shear stress can also be determined by evaluating the stress power for the 

foam. The relationship between the macroscopic stress power 5 and volume integrals 
of the corresponding microscopic quantities is given by Batchelor (1970). By 
including viscous and surface tension effects for our two-dimensional foam, we have 

where 

5 = - Vu:tsda = @+ Ws, : s, 
The term @ represents the irreversible rate of internal energy increase by viscous 
dissipation ; Ws is the rate a t  which work is done to deform interfaces. When the 
surface tension is constant, Ws = &&/A, where A!? is the time derivative of the total 
interfacial area; then and only then, Ws can be identified as the time rate of change 
of interfacial energy per unit volume. 

The primary contributions to @ come from the transition regions (Schwartz & 
Princen 1987). In the small deformation theory, Reinelt & Kraynik (1989) derived 
explicit formulae for @ ; their results are readily extended to large deformations and 
are given by 

3 

= 8 x 3-il"YCai C, P,(Rk- 1) (Fk)i. (8.2) 
k-1 a 

This viscous dissipation termz is O(Cai), but the surface work term involves 
contributions of 0(1) and O(Car). 

To evaluate WS, note that the quantity Vu: ( / -nn) ,  which represents the local rate 
a t  which the interface stretches, vanishes on the inextensible thin-film interfaces 
where T + To. All creation and depletion of surface occurs in the Plateau borders 
where the tension is uniform and equal to the equilibrium value 3. Knowing this, the 
surface integral for Ws becomes 

W,=z (8.3) "( k-1 

where S,, is the time rate of change of surface area in the Plateau border. The 
summation accounts for convection of interface a t  speed Uk = Lk from the Plateau 
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border, which is not a material surface. Reinelt & Kraynik (1989) evaluated Ws 
explicitly for small deformations and showed that it involves finite contributions of 
O(1) and O(Ca%). 

One can use (8.3) to show that Ws integrates to zero over a cycle because, to leading 
order, S,, and L, are continuous functions of time for a wet foam. As a consequence, 
the effective foam viscosity can be determined from the average value of the positive 
semidefinite quantity Qi. In  figure 15 we compare Qi and uky for 0 = 0 and q5 = 0.08. 
The difference between these two functions determines l$'", the O(Cai) contribution 
to Ws, which is also shown. 

9. Planar extensional flow 

extensional deformations for which (2.1) is replaced by 
The theoretical framework developed in previous sections carries over to planar 

(9.1) 

where E is the Henky strain. As in simple shear, the structure and stress for 
deformations of an equilibrium foam in mode I are described by analytical forms. 
Omitting the derivations, the film variables are given by 

b, = (6Ex e+', 6Ey e-'), 

b k  = f i ,  Qk/a  = $ cosh E + cos 2fi sinh E, 



On the shearing $ow of foams and concentrated emulsions 45 1 

FIQURE 

where 

16. Evolution of foam structure with strain for planar extension with 0 = An and 
= 0.08. The range of Henky strain is 1.3170 with equal increments. 

- 
G, = 

1 + cos 2 6  sinh 2s - 2 cos 4 6  sinh’ E 

6 cosh s 3 

- sin 2 f i  sinh 2s - 2 sin 4p”, sinh2 E 

6 cosh E 
p k  = , 

and (k, I ,  m)  are permutations of (1,2,3). The instantaneous tensile stress and shear 
stress are given by 

( T x x - f s y y = - -  T, [ s i n h E + ,  2 ~ a :  C PkR,(Fk)t 
a 4 3  3’ k-1 

(9.3) 

where F, = sinh s + cos Zp”, cosh E ,  

and the capillary number is based on the extension rate, Ca = paG/T,. 
The material functions for steady planar extensional flow can also be evaluated 

using the methods developed in previous sections. Again, there exists an infinite set 
of initial orientations for which response is strain periodic. The $,, and E ,  are given 
bJ’ 

2K 
1 - .\/3 tan$,’ exp (s,) = -I+ (9.4) 

1 -K2 + (I  +K)2 
1 +K2 + ( I - K ) ”  

tan26, = 4 3  

where 
1 +21J+12 

K =  
J - I  ’ 

Here I and J are the relatively prime integers, I>, 0, J > 0, for which K is also an 
integer. The shortest period is given by I = 0, J = 1 where OP = and E ,  x 1.3170. 
The corresponding variation of structure and stress with strain is shown in figures 16 
and 17, respectively, for q5 = 0.07. 
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FIQURE 17. Instantaneous stress 06. Henky strain for planar extension with 0 = +I and 
6 = 0.08; -, d,, - G Y y ;  ---, u;, - ukY ; -.- 2 C X Y .  " 

1 .o 

0.5 
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-0.5 
'. .., 

I I I I 

12 
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-3  
0.90 0.92 

#a 

0.94 

FIQURE 18. TiEave-ed stressKdispersed-phase volume fraction $d for planar extension with 
8 = L l r .  12 , _ _ _ _  I ,,I x x - u ; y ;  -.- , B,, ; + . . . . . , u;,. The shear stress would he equal to zero 
for an isotropic material. 

Again, by restricting the range of to give continuous quasi-static solutions, we 
can evaluate the planar extensional viscosity 

-- 
(9.5) 

- 
Tf = (axx-ayy)/i = (4Yx-CGY)/ i*  
- -  

We have used the fact that (Gxx - sYy) is identically equal to zero for the wet foams 
under consideration; thus, is proportional to pCad. Figure 18 indicates that the 
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variation of extensional viscosity with q5d is - qualitatively similar to the shear 
viscosity. Also shown is the average shear stress $'xu, which is finite, indicating that 
the material response is not isotropic throughout the entire cycle. By contrast, (9.3) 
shows that the quasi-static response is isotropic for deformations of an equilibrium 
foam in mode I (Khan & Armstrong 1986). 

10. Concluding remarks 
In this analysis we determine the rate-dependent rheology for slow steady shearing 

flow of a model wet foam with inextensible thin-film interfaces. The viscosity 
functions for simple shear and planar extension exhibit the same power-law 
dependence on strain rate and show no evidence of a yield stress. This time-averaged 
behaviour seems to contradict the solid-like response for small strains, where, for 
example, in simple shear $'xu is finite and its local maximum has been identified as 
a yield stress. Not only the value but the existence of a yield stress can depend on 
whether the definition is based on instantaneous or time-averaged conditions. 

Even though the instantaneous structure and stress exhibit strong anisotropy 
during steady simple shearing flow, the predicted foam viscosity ;.a always increases 
with decreasing liquid content and is relatively insensitive to the initial foam 
orientations examined. The rate-dependent rheology exhibited by our model stems 
from viscous flow induced by film withdrawal from Plateau borders. Plateau-border 
coalescence and separation determines the number of thin films; when these 
processes occur depends on the liquid content of the foam. Dependence of viscosity 
on liquid volume fraction follows. By contrast, small deformations do not involve 
Plateau-border coalescence and the corresponding rate-dependent contributions to 
the stress do not depend on liquid content. Therefore, the 'extensional viscosity' 
obtained by Schwartz & Princen (1987) in their ad hoc calculation does not depend 
on liquid volume fraction. In addition, the initial foam orientation that they consider 
is not strain periodic and the tensile stress increases without bound for steady planar 
extensional flow. 

Because viscous flow in the bubbles has been neglected, our results do not apply 
when the dispersed-phase viscosity ,uo is too large. To quantify this, assume that the 
dispersed phase contributes a rate-dependent term of O(p0 y )  to the stress, which can 
be compared to the term of O(To Cagla) for the film-level viscous flow considered here. 
If the thin-film interfaces remain inextensible, it follows that dispersed-phase flow 
can be neglected when 

p0/p 4 Cap;. 

Thus, the thin-film flow determines the rate-dependent rheology even though the 
volume fraction of the dispersed phase is larger and its viscosity may be somewhat 
larger. 

Although quantitative agreement cannot be expected, it is worth comparing our 
results with recent, careful measurements by Princen & Kiss (1989) of shear viscosity 
for concentrated emulsions. Their data can be represented by (7.2) with rate 
dependence of O(Cai) instead of O(Cag). The data indicate that is finite, so the 
emulsions exhibit a yield stress. This is consistent with the fact that their 'three- 
dimensional' emulsions cannot be considered 'wet' - because 0.833 < q5d < 0.976. Also 
consistent with our analysis, their measured czy decreases with increasing liquid 
content. The discrepancy in the exponent on Ca can be attributed to many things. 
Princen & Kiss suggest neglect of disjoining-pressure effects. In addition, we note 
that the assumption of inextensible thin-film interfaces was not investigated 

(10.1) 
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experimentally. Moreover, po and p are 49 and 1.53 mPa s, respectively, for the 
emulsions studied, and the viscosity data correspond to Ca ranging from to lop4. 
Under these conditions, (10.1) is violated and drop viscosity may be important. 

Each feature of the idealized structure - taken to be two-dimensional, mono- 
disperse, and spatially periodic - is a significant factor in the tractability of this 
analysis. Each of these idealizations compromises to  a greater or lesser degree, the 
structure of a real foam, which is three-dimensional, polydisperse, and disordered. 

The geometrical constraints imposed here retain some essential physical features 
of foams, such as thin films and Plateau borders. Also retained are essential 
microrheological mechanisms, such as coalescence and separation of Plateau borders, 
which lead to neighbour switching. Many features of foam rheology predicted here 
are in qualitative accord with experiment. Other features are physically implausible 
for obvious reasons ; for example and perhaps foremost, the macroscopic response of 
a monodisperse, spatially periodic foam reflects the interaction of individual bubbles 
with identical neighbours. During flow, this leads to strong dependence of structure 
and stress on strain and initial orientation. 

A highly disordered two-dimensional foam should exhibit isotropic rheological 
response and reduced fluctuations in stress with strain. The coalescence and 
separation of Plateau borders will no longer occur simultaneously throughout the 
foam. Extending the current analysis to disordered structure shows promise. The 
simulation methods developed by Weaire & Kermode (1983, 1984) and Weaire & Fu 
(1988) will require modification for finite liquid content and the corresponding 
structural complexity. 

By restricting this theory to  wet foams, the film-level viscous flow can be 
considered quasi-steady and is conveniently described by asymptotic results. When 
the foam contains little liquid, solutions for structure lose continuity with strain. 
This leads to abrupt separation of Plateau borders and fast film-level flow. The 
corresponding large capillary number film withdrawal problem has not been 
analysed. It is required to extend this theory to small liquid volume fractions where 
the foam viscosity function will exhibit a yield stress. 

There has been progress over the past decade, but it is clear that the rheology of 
foams and concentrated emulsions will continue to provide significant challenge to 
experimentalists and theorists. 
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US Department of Energy under contract DE-AC04-76DP00789. D. A. R .  would like 
to thank the Applied Mathematics Department and Fluid and Thermal Sciences 
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